Boosting Question Answering by Deep Entity Recognition

نویسنده

  • Piotr Przybyla
چکیده

In this paper an open-domain factoid question answering system for Polish, RAFAEL, is presented. The system goes beyond finding an answering sentence; it also extracts a single string, corresponding to the required entity. Herein the focus is placed on different approaches to entity recognition, essential for retrieving information matching question constraints. Apart from traditional approach, including named entity recognition (NER) solutions, a novel technique, called Deep Entity Recognition (DeepER), is introduced and implemented. It allows a comprehensive search of all forms of entity references matching a given WordNet synset (e.g. an impressionist), based on a previously assembled entity library. It has been created by analysing the first sentences of encyclopaedia entries and disambiguation and redirect pages. DeepER also provides automatic evaluation, which makes possible numerous experiments, including over a thousand questions from a quiz TV show answered on the grounds of Polish Wikipedia. The final results of a manual evaluation on a separate question set show that the strength of DeepER approach lies in its ability to answer questions that demand answers beyond the traditional categories of named entities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

Qa@l2f@qa@clef

This paper introduces L2F’s (INESC-ID) question/answering system and presents its results in the QA@CLEF07 evaluation task. QA@LF bases its performance on a high-quality deep linguistic analysis of the question, which is strongly based on named entity recognition. However, if a precise analysis is not possible or if no answer is found in previous processed data, the system is also capable of re...

متن کامل

Filter-Context Dynamic Coattention Networks for Question Answering

Question Answering (QA) is one of the most challenging and crucial tasks in Natural Language Processing (NLP) that has a wide range of applications in various domains, such as information retrieval and entity extraction. Traditional methods involve linguistically based NLP techniques, and recent researchers apply Deep Learning on this task and have achieved promising result. In this paper, we c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.08675  شماره 

صفحات  -

تاریخ انتشار 2016